The CTF File Format

Version 3

Nick Alcock

Copyright (©) 2019 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU General Public License, Version 3 or any later version published by the Free
Software Foundation. A copy of the license is included in the section entitled “GNU General
Public License”.

Table of Contents

OVEervIEW 1
1 CTF archives 2
2 CTF dictionaries 4
2.1 CTF Preamble e 4
2.1.1 CTF file-wide flags. oo e 5

2.2 CTF header...... .ot 5
2.3 The type section..........ccoiiiiiiii 7
2.3.1 The info word, ctt_info........... L 9

2.3.2 Type indexes and type IDs......... ... oL, 9

2.3.3 Typekinds......cooiiiiiii 10

2.3.4 Integer tyPes . ..o viiiii i e 11

2.3.5 Floating-point types ..., 13

2.3.6 SHCES. ..ottt 14

2.3.7 Pointers, typedefs, and cvr-quals........... 15

2.3.8 AT aAYS. it 15

2.3.9 Function pointers........... ..., 16
2310 ENUMS ..o 16
2.3.11 Structs and unionsoiiiiiiiii 17
2.3.12 Forward declarationso, 18

2.4 The data object section......... ... 18
2.5 The function info sectionooiiiii i 19
2.6 The function and object index sections......................... 19
2.7 The variable sectionoiiiiiii 19
2.8 The label sectionot 20
2.9 The string SeCtionouiii i 20
2.10 Datamodelsoiiiiiiii 21
2.11 Limits of CTF 21
2.12 Older VEIrSIONSttt 21
2.12.1 CTF version 2.t 21
2.12.2 CTFE version 1.......ooiiiiiii i 21

Overview

The CTF file format compactly describes C types and the association between function and
data symbols and types: if embedded in ELF objects, it can exploit the ELF string table to
reduce duplication further. There is no real concept of namespacing: only top-level types
are described, not types scoped to within single functions.

CTF dictionaries can be children of other dictionaries, in a one-level hierarchy: child
dictionaries can refer to types in the parent, but the opposite is not sensible (since if you
refer to a child type in the parent, the actual type you cited would vary depending on what
child was attached). This parent/child definition is recorded in the child, but only as a
recommendation: users of the API have to attach parents to children explicitly, and can
choose to attach a child to any parent they like, or to none, though doing so might lead to
unpleasant consequences like dangling references to types. See Section 2.3.2 [Type indexes
and type IDs], page 9.

(It is likely that in future we will forbid type lookups in dictionaries that were created
as a child, opened, but not associated with a parent yet, but right now this will sometimes
work. Don’t rely on it.)

The associated API to generate, merge together, and query this file format will be
described in the accompanying 1ibctf manual once it is written. There is no API to modify
dictionaries once they’ve been written out: CTF is a write-once file format. (However, it is
always possible to dynamically create a new child dictionary on the fly and attach it to a
pre-existing, read-only parent.)

There are two major pieces to CTF: the archive and the dictionary. Some relatives and
ancestors of CTF call dictionaries containers: the archive format is unique to this variant
of CTF. (Much of the source code still uses the old term.)

The archive file format is a very simple mmappable archive used to group multiple dic-
tionaries together into groups: it is expected to slowly go away and be replaced by other
mechanisms, but right now it is an important part of the file format, used to group dic-
tionaries containing types with conflicting definitions in different TUs with the overarching
dictionary used to store all other types. (Even when archives go away, the 1ibctf API used
to access them will remain, and access the other mechanisms that replace it instead.)

The CTF dictionary consists of a preamble, which does not vary between versions of
the CTF file format, and a header and some number of sections, which can vary between
versions.

The rest of this specification describes the format of these sections, first for the latest
version of CTF, then for all earlier versions supported by libctf: the earlier versions are
defined in terms of their differences from the next later one. We describe each part of the
format first by reproducing the C structure which defines that part, then describing it at
greater length in terms of file offsets.

The description of the file format ends with a description of relevant limits that apply
to it. These limits can vary between file format versions.

This document is quite young, so for now the C code in ctf.h should be presumed
correct when this document conflicts with it.

1 CTF archives

The CTF archive format maps names to CTF dictionaries. The names may contain any
character other than \0, but for now archives containing slashes in the names may not
extract correctly. It is possible to insert multiple members with the same name, but these
are quite hard to access reliably (you have to iterate through all the members rather than
opening by name) so this is not recommended.

CTF archives are not themselves compressed: the constituent components, CTF dictio-
naries, can be compressed. (See Section 2.2 [CTF header], page 5).

CTF archives usually contain a collection of related dictionaries, one parent and many
children of that parent. CTF archives can have a member with a default name, .ctf (which
can be represented as NULL in the API). If present, this member is usually the parent of all
the children, but it is possible for CTF producers to emit parents with different names if
they wish (usually for backward- compatibility purposes).

.ctf sections in ELF objects consist of a single CTF dictionary rather than an archive of
dictionaries if and only if the section contains no types with identical names but conflicting
definitions: if two conflicting definitions exist, the deduplicator will place the type most
commonly referred to by other types in the parent and will place the other type in a child
named after the translation unit it is found in, and will emit a CTF archive containing both
dictionaries instead of a raw dictionary. All types that refer to such conflicting types are
also placed in the per-translation-unit child.

The definition of an archive in ctf.h is as follows:

struct ctf_archive

{
uint64_t ctfa_magic;
uint64_t ctfa_model;
uint64_t ctfa_nfiles;
uint64_t ctfa_names;
uint64_t ctfa_ctfs;

};

typedef struct ctf_archive_modent
{

uint64_t name_offset;

uint64_t ctf_offset;
} ctf_archive_modent_t;

(Note one irregularity here: the ctf_archive_t is not a typedef to struct ctf_archive,
but a different typedef, private to 1ibctf, so that things that are not really archives can
be made to appear as if they were.)

All the above items are always in little-endian byte order, regardless of the machine
endianness.

The archive header has the following fields:

Offset Name
0x00 uint64_t

0x08 uint64_t

0x10 uint64_t

0x18 uint64_t

0x20 uint64_t

ctfa_magic

ctfa_model

ctfa_nfiles

ctfa_names

ctfa_ctfs

Description
The magic number for archives, CTFA_MAGIC:
0x8b47f2a4d7623eeb.

The data model for this archive: an arbitrary integer
that serves no purpose but to be handed back by the
libctf API. See Section 2.10 [Data models], page 21.

The number of CTF dictionaries in this archive.
Offset of the name table, in bytes from the start of
the archive. The name table is an array of struct

ctf_archive_modent_t[ctfa_nfiles].

Offset of the CTF table. Each element starts with a
uint64_t size, followed by a CTF dictionary.

The array pointed to by ctfa_names is an array of entries of ctf_archive_modent:

Offset Name

0x00 uint64_t name_offset

0x08 uint64_t

ctf_offset

Description
Offset of this name, in bytes from the start
of the archive.

Offset of this CTF dictionary, in bytes from
the start of the archive.

The ctfa_names array is sorted into ASCIIbetical order by name (i.e. by the result of
dereferencing the name_offset).

The archive file also contains a name table and a table of CTF dictionaries: these are
pointed to by the structures above. The name table is a simple strtab which is not required
to be sorted; the dictionary array is described above in the entry for ctfa_ctfs.

The relative order of these various parts is not defined, except that the header naturally

always comes first.

2 CTF dictionaries

CTF dictionaries consist of a header, starting with a premable, and a number of sections.

2.1 CTF Preamble

The preamble is the only part of the CTF dictionary whose format cannot vary between
versions. It is never compressed. It is correspondingly simple:

typedef struct ctf_preamble
{

unsigned short ctp_magic;

unsigned char ctp_version;

unsigned char ctp_flags;
} ctf_preamble_t;

#defines are provided under the names cth_magic, cth_version and cth_flags to
make the fields of the ctf_preamble_t appear to be part of the ctf_header_t, so consuming
programs rarely need to consider the existence of the preamble as a separate structure.

Offset Name Description
0x00 unsigned short ctp_magic The magic number for CTF dictionaries,
CTF_MAGIC: Oxdff2.

0x02 unsigned char ctp_version The version number of this CTF dictio-
nary.
0x03 ctp_flags Flags for this CTF file. See Section 2.1.1

[CTF file-wide flags], page 5.

Every element of a dictionary must be naturally aligned unless otherwise specified. (This
restriction will be lifted in later versions.)

CTF dictionaries are stored in the native endianness of the system that generates them:
the consumer (e.g., 1libctf) can detect whether to endian-flip a CTF dictionary by inspect-
ing the ctp_magic. (If it appears as 0xf2df, endian-flipping is needed.)

The version of the CTF dictionary can be determined by inspecting ctp_version. The
following versions are currently valid, and 1libctf can read all of them:

Version Number Description
CTF_VERSION_1 1 First version, rare. Very similar to Solaris CTF.
See Section 2.12.2 [CTF version 1], page 21.

CTF_VERSION_1_UPGRADED_3 2 First version, upgraded to v3 or higher and writ-
ten out again. Name may change. Very rare. See
Section 2.12.2 [CTF version 1], page 21.

CTF_VERSION_2 3 Second version, with many range limits lifted. See
Section 2.12.1 [CTF version 2], page 21.

Chapter 2: CTF dictionaries 5

CTF_VERSION_3 4 Third and current version.

This section documents CTF_VERSION_3: differences in older versions are described in
See Section 2.12 [Older versions|, page 21.

2.1.1 CTF file-wide flags

The preamble contains bitflags in its ctp_flags field that describe various file-wide prop-
erties. Currently, only one flag is defined, CTF_F_COMPRESS, which indicates that this file
is compressed with zlib. Further flags (and further compression methods) wil be added in
future

2.2 CTF header

The CTF header is the first part of a CTF dictionary, including the preamble. All parts
of it other than the preamble (see Section 2.1 [CTF Preamble], page 4) can vary between
CTF file versions and are never compressed. It contains things that apply to the dictionary
as a whole, and a table of the sections into which the rest of the dictionary is divided.
The sections tile the file: each section runs from the offset given until the start of the next
section. Only the last section cannot follow this rule, so the header has a length for it
instead.

All section offsets, here and in the rest of the CTF file, are relative to the end of the
header. (This is annoyingly different to how offsets in CTF archives are handled.)

This is the first structure to include offsets into the string table, which are not straight
references because CTF dictionaries can include references into the ELF string table to save
space, as well as into the string table internal to the CTF dictionary. See Section 2.9 [The
string section|, page 20, for more on these. Offset 0 is always the null string.

typedef struct ctf_header

{
ctf_preamble_t cth_preamble;
uint32_t cth_parlabel;
uint32_t cth_parname;
uint32_t cth_cuname;
uint32_t cth_1lbloff;
uint32_t cth_objtoff;
uint32_t cth_funcoff;
uint32_t cth_objtidxoff;
uint32_t cth_funcidxoff;
uint32_t cth_varoff;
uint32_t cth_typeoff;
uint32_t cth_stroff;
uint32_t cth_strlen;

} ctf_header_t;

In detail:

Chapter 2: CTF dictionaries

Offset
0x00

0x04

0x08

Oxlc

0x10

0x14

0x18

Oxlc

0x20

Name

ctf_preamble_t cth_preamble

uint32_t

uint32_t

uint32_t

uint32_t

uint32_t

uint32_t

uint32_t

uint32_t

cth_parlabel

cth_parname

cth_cuname

cth_lbloff

cth_objtoff

cth_funcoff

cth_objtidxoff

cth_funcidxoff

Description
The preamble (conceptually embedded in the
header). See Section 2.1 [CTF Preamble|, page 4,

The parent label, if deduplication happened against
a specific label: a strtab offset. See Section 2.8 [The
label section], page 20. Currently unused and always
0, but may be used in future when semantics are at-
tached to the label section.

The name of the parent dictionary deduplicated
against: a strtab offset. Interpretation is up to the
consumer (usually a CTF archive member name). 0
(the null string) if this is not a child dictionary.

The name of the compilation unit, for consumers like
GDB that want to know the name of CUs associated
with single CUs: a strtab offset. 0 if this dictionary
describes types from many CUs.

The offset of the label section, which tiles the type
space into named regions. See Section 2.8 [The label
section], page 20.

The offset of the data object section, which maps ELF
data symbols to types. See Section 2.4 [The data
object section], page 18.

The offset of the function info section, which maps
ELF function symbols to a return type and arg types.
See Section 2.5 [The function info section], page 19.

The offset of the object index section, which maps
ELF object symbols to entries in the data object
section. Always empty in fully-linked binaries. See
Section 2.6 [The function and object index sections],
page 19.

The offset of the function info index section, which
maps ELF function symbols to entries in the func-
tion info section. Always empty in fully-linked bina-
ries. See Section 2.6 [The function and object index
sections], page 19.

Chapter 2: CTF dictionaries

0x24 uint32_t cth_varoff

0x28 uint32_t cth_typeoff

0x2c uint32_t cth_stroff

0x30 uint32_t cth_strlen

The offset of the variable section, which maps string
names to types. See Section 2.7 [The variable sec-
tion], page 19.

The offset of the type section, the core of CTF, which
describes types using variable-length array elements.
See Section 2.3 [The type section], page 7.

The offset of the string section. See Section 2.9 [The
string section], page 20.

The length of the string section (not an offset!). The
CTF file ends at this point.

Everything from this point on (until the end of the file at cth_stroff + cth_strlen) is
compressed with zlib if CTF_F_COMPRESS is set in the preamble’s ctp_flags.

2.3 The type section

This section is the most important section in CTF, describing all the top-level types in the
program. It consists of an array of type structures, each of which describes a type of some
kind: each kind of type has some amount of variable-length data associated with it (some
kinds have none). The amount of variable-length data associated with a given type can
be determined by inspecting the type, so the reading code can walk through the types in

sequence at opening time.

Each type structure is one of a set of overlapping structures in a discriminated union of
sorts: the variable-length data for each type immediately follows the type’s type structure.
Here’s the largest of the overlapping structures, which is only needed for huge types and so

is very rarely seen:

typedef struct ctf_type
{
uint32_t ctt_name;
uint32_t ctt_info;
__extension__
union
{
uint32_t ctt_size;
uint32_t ctt_type;
};
uint32_t ctt_lsizehi;
uint32_t ctt_lsizelo;
} ctf_type_t;

Here’s the much more common smaller form:

typedef struct ctf_stype
{

uint32_t ctt_name;

Chapter 2: CTF dictionaries

uint32_t ctt_info;
__extension_
union
{
uint32_t ctt_size;
uint32_t ctt_type;
};
} ctf_type_t;

If ctt_size is the #define CTF_LSIZE_SENT, OxfHfffff, this type is described by a ctf_

type_t: otherwise, a ctf_stype_t.

Here’s what the fields mean:

Offset Name

0x00 uint32_t ctt_name
0x04 uint32_t ctt_info
0x08 uint32_t ctt_size
0x08 uint32_t ctt_type

0x0c (ctf_type_t wuint32_t ctt_lsizehi
only)

0x10 (ctf_type_t wuint32_t ctt_lsizelo
only)

Description
Strtab offset of the type name, if any (0 if none).

The info word, containing information on the kind
of this type, its variable-length data and whether
it is visible to name lookup. See See Section 2.3.1
[The info word], page 9.

The size of this type, if this type is of a kind for
which a size needs to be recorded (constant-size
types don’t need one). If this is CTF_LSIZE_SENT,
this type is a huge type described by ctf_type_t.

The type this type refers to, if this type is of a
kind which refers to other types (like a pointer).
All such types are fixed-size, and no types that are
variable-size refer to other types, so ctt_size and
ctt_type overlap. All type kinds that use ctt_
type are described by ctf_stype_t, not ctf_
type_t. See Section 2.3.2 [Type indexes and type
IDs|, page 9.

The high 32 bits of the size of a very large type.
The CTF_TYPE_LSIZE macro can be used to get a
64-bit size out of this field and the next one. CTF_
SIZE_TO_LSIZE_HI splits the ctt_lsizehi out of
it again.

The low 32 bits of the size of a very large type.
CTF_SIZE_TO_LSIZE_LO splits the ctt_lsizelo
out of a 64-bit size.

Two aspects of this need further explanation: the info word, and what exactly a type ID
is and how you determine it. (Information on the various type-kind- dependent things, like
whether ctt_size or ctt_type is used, is described in the section devoted to each kind.)

Chapter 2: CTF dictionaries 9

2.3.1 The info word, ctt_info
The info word is a bitfield split into three parts. From MSB to LSB:

Bit offset Name Description

26-31 kind Type kind: see Section 2.3.3 [Type kinds], page 10.

25 isroot 1 if this type is visible to name lookup

0-24 vlen Length of variable-length data for this type (some kinds only).

The variable-length data directly follows the ctf_type_t or ctf_
stype_t. This is a kind-dependent array length value, not a
length in bytes. Some kinds have no variable-length data, or
fixed-size variable-length data, and do not use this value.

The most mysterious of these is undoubtedly isroot. This indicates whether types with
names (nonzero ctt_name) are visible to name lookup: if zero, this type is considered a
non-root type and you can’t look it up by name at all. Multiple types with the same name
in the same C namespace (struct, union, enum, other) can exist in a single dictionary, but
only one of them may have a nonzero value for isroot. 1ibctf validates this at open time
and refuses to open dictionaries that violate this constraint.

Historically, this feature was introduced for the encoding of bitfields (see Section 2.3.4
[Integer types], page 11): for instance, int bitfields will all be named int with different
widths or offsets, but only the full-width one at offset zero is wanted when you look up the
type named int. With the introduction of slices (see Section 2.3.6 [Slices|, page 14) as a
more general bitfield encoding mechanism, this is less important, but we still use non-root
types to handle conflicts if the linker API is used to fuse multiple translation units into one
dictionary and those translation units contain types with the same name and conflicting
definitions. (We do not discuss this further here, because the linker never does this: only
specialized type mergers do, like that used for the Linux kernel. The libctf documentation
will describe this in more detail.)

The CTF_TYPE_INFO macro can be used to compose an info word from a kind, isroot,
and vlen; CTF_V2_INFO_KIND, CTF_V2_INFO_ISROOT and CTF_V2_INFO_VLEN pick it apart
again.

2.3.2 Type indexes and type IDs

Types are referred to within the CTF file via type IDs. A type ID is a number from 0 to
232, from a space divided in half. Types 231 — 1 and below are in the parent range: these
IDs are used for dictionaries that have not had any other dictionary ctf_imported into it
as a parent. Both completely standalone dictionaries and parent dictionaries with children
hanging off them have types in this range. Types 231 and above are in the child range: only
types in child dictionaries are in this range.

These IDs appear in ctf_type_t.ctt_type (see Section 2.3 [The type section], page 7),
but the types themselves have no visible ID: quite intentionally, because adding an ID uses
space, and every ID is different so they don’t compress well. The IDs are implicit: at open
time, the consumer walks through the entire type section and counts the types in the type
section. The type section is an array of variable-length elements, so each entry could be

Chapter 2: CTF dictionaries 10

considered as having an index, starting from 1. We count these indexes and associate each
with its corresponding ctf_type_t or ctf_stype_t.

Lookups of types with IDs in the parent space look in the parent dictionary if this
dictionary has one associated with it; lookups of types with IDs in the child space error
out if the dictionary does not have a parent, and otherwise convert the ID into an index by
shaving off the top bit and look up the index in the child.

These properties mean that the same dictionary can be used as a parent of child dic-
tionaries and can also be used directly with no children at all, but a dictionary created as
a child dictionary must always be associated with a parent — usually, the same parent —
because its references to its own types have the high bit turned on and this is only flipped
off again if this is a child dictionary. (This is not a problem, because if you don’t associate
the child with a parent, any references within it to its parent types will fail, and there are
almost certain to be many such references, or why is it a child at all?)

This does mean that consumers should keep a close eye on the distinction between type
IDs and type indexes: if you mix them up, everything will appear to work as long as you're
only using parent dictionaries or standalone dictionaries, but as soon as you start using
children, everything will fail horribly.

Type index zero, and type ID zero, are used to indicate that this type cannot be rep-
resented in CTF as currently constituted: they are emitted by the compiler, but all type
chains that terminate in the unknown type are erased at link time (structure fields that
use them just vanish, etc). So you will probably never see a use of type zero outside the
function info and data object sections, where they serve as sentinels of sorts, to indicate
symbols with no associated type.

The macros CTF_V2_TYPE_TO_INDEX and CTF_V2_INDEX_TO_TYPE may help in transla-
tion between types and indexes: CTF_V2_TYPE_ISPARENT and CTF_V2_TYPE_ISCHILD can
be used to tell whether a given ID is in the parent or child range.

It is quite possible and indeed common for type IDs to point forward in the dictionary,
as well as backward.

2.3.3 Type kinds

Every type in CTF is of some kind. Each kind is some variety of C type: all structures
are a single kind, as are all unions, all pointers, all arrays, all integers regardless of their
bitfield width, etc. The kind of a type is given in the kind field of the ctt_info word (see
Section 2.3.1 [The info word], page 9).

The space of type kinds is only a quarter full so far, so there is plenty of room for
expansion. It is likely that in future versions of the file format, types with smaller kinds
will be more efficiently encoded than types with larger kinds, so their numerical value will
actually start to matter in future. (So these IDs will probably change their numerical values
in a later release of this format, to move more frequently-used kinds like structures and cv-
quals towards the top of the space, and move rarely-used kinds like integers downwards.
Yes, integers are rare: how many kinds of int are there in a program? They’re just very
frequently referenced.)

Here’s the set of kinds so far. Each kind has a #define associated with it, also given
here.

Chapter 2: CTF dictionaries 11

Kind

10

11

12

13

14

Macro
CTF_K_UNKNOWN

CTF_K_INTEGER

CTF_K_FLOAT

CTF_K_POINTER

CTF_K_ARRAY

CTF_K_FUNCTION

CTF_K_STRUCT

CTF_K_UNION

CTF_K_ENUM

CTF_K_FORWARD

CTF_K_TYPEDEF

CTF_K_VOLATILE

CTF_K_CONST

CTF_K_RESTRICT

CTF_K_SLICE

Purpose

Indicates a type that cannot be represented in CTF, or that
is being skipped.

An integer type. See Section 2.3.4 [Integer types], page 11.

A floating-point type. See Section 2.3.5 [Floating-point types],
page 13.

A pointer. See Section 2.3.7 [Pointers typedefs and cvr-quals],
page 15.

An array. See Section 2.3.8 [Arrays|, page 15.

A function pointer. See Section 2.3.9 [Function pointers],

page 16.

A structure. See Section 2.3.11 [Structs and unions], page 17.
A union. See Section 2.3.11 [Structs and unions|, page 17.
An enumerated type. See Section 2.3.10 [Enums|, page 16.
A forward. See Section 2.3.12 [Forward declarations]|, page 18.

A typedef. See Section 2.3.7 [Pointers typedefs and cvr-quals],
page 15.

A volatile-qualified type. See Section 2.3.7 [Pointers typedefs
and cvr-quals], page 15.

A const-qualified type. See Section 2.3.7 [Pointers typedefs
and cvr-quals], page 15.

A restrict-qualified type. See Section 2.3.7 [Pointers typedefs
and cvr-quals], page 15.

A slice, a change of the bit-width or offset of some other type.
See Section 2.3.6 [Slices|, page 14.

Now we cover all type kinds in turn. Some are more complicated than others.

2.3.4 Integer types

Integral types are all represented as types of kind CTF_K_INTEGER. These types fill out
ctt_size in the ctf_stype_t with the size in bytes of the integral type in question. They
are always represented by ctf_stype_t, never ctf_type_t. Their variable-length data is
one uint32_t in length: vlen in the info word should be disregarded and is always zero.

Chapter 2: CTF dictionaries 12

The variable-length data for integers has multiple items packed into it much like the info
word does.

Bit offset Name Description

24-31 Encoding The desired display representation of this integer. You can
extract this field with the CTF_INT_ENCODING macro. See
below.

16-23 Offset The offset of this integral type in bits from the start of

its enclosing structure field, adjusted for endianness: see
Section 2.3.11 [Structs and unions|, page 17. You can ex-
tract this field with the CTF_INT_OFFSET macro.

0-15 Bit-width The width of this integral type in bits. You can extract
this field with the CTF_INT_BITS macro.

If you choose, bitfields can be represented using the things above as a sort of integral
type with the isroot bit flipped off and the offset and bits values set in the vlen word:
you can populate it with the CTF_INT_DATA macro. (But it may be more convenient to
represent them using slices of a full-width integer: see Section 2.3.6 [Slices|, page 14.)

Integers that are bitfields usually have a ctt_size rounded up to the nearest power of
two in bytes, for natural alignment (e.g. a 17-bit integer would have a ctt_size of 4).
However, not all types are naturally aligned on all architectures: packed structures may in
theory use integral bitfields with different ctt_size, though this is rarely observed.

The encoding for integers is a bit-field comprised of the values below, which consumers
can use to decide how to display values of this type:

Offset Name Description
0x01 CTF_INT_SIGNED If set, this is a signed int: if false, unsigned.

0x02 CTF_INT_CHAR If set, this is a char type. It is platform-dependent whether unadorned
char is signed or not: the CTF_CHAR macro produces an integral type
suitable for the definition of char on this platform.

0x04 CTF_INT_BOOL If set, this is a boolean type. (It is theoretically possible to turn this and
CTF_INT_CHAR on at the same time, but it is not clear what this would
mean.)

0x08 CTF_INT_VARARGS If set, this is a varargs-promoted value in a K&R function definition.
This is not currently produced or consumed by anything that we know
of: it is set aside for future use.

The GCC “Complex int” and fixed-point extensions are not yet supported: references
to such types will be emitted as type 0.

Chapter 2: CTF dictionaries 13

2.3.5 Floating-point types

Floating-point types are all represented as types of kind CTF_K_FLOAT. Like integers, These
types fill out ctt_size in the ctf_stype_t with the size in bytes of the floating-point type
in question. They are always represented by ctf_stype_t, never ctf_type_t.

This part of CTF shows many rough edges in the more obscure corners of floating-point
handling, and is likely to change in format v4.

The variable-length data for floats has multiple items packed into it just like integers do:

Bit offset Name Description

24-31 Encoding The desired display representation of this float. You can extract
this field with the CTF_FP_ENCODING macro. See below.

1623 Offset The offset of this floating-point type in bits from the start of its en-
closing structure field, adjusted for endianness: see Section 2.3.11
[Structs and unions], page 17. You can extract this field with the
CTF_FP_OFFSET macro.

0-15 Bit-width The width of this floating-point type in bits. You can extract this

field with the CTF_FP_BITS macro.

The purpose of the floating-point offset and bit-width is somewhat opaque, since there
are no such things as floating-point bitfields in C: the bit-width should be filled out with
the full width of the type in bits, and the offset should always be zero. It is likely that these
fields will go away in the future. As with integers, you can use CTF_FP_DATA to assemble
one of these vlen items from its component parts.

The encoding for floats is not a bitfield but a simple value indicating the display repre-
sentation. Many of these are unused, relate to Solaris-specific compiler extensions, and will
be recycled in future: some are unused and will become used in future.

Offset Name Description

1 CTF_FP_SINGLE This is a single-precision IEEE 754 float.

2 CTF_FP_DOUBLE This is a double-precision IEEE 754 double.

3 CTF_FP_CPLX This is a Complex float.

4 CTF_FP_DCPLX This is a Complex double.

) CTF_FP_LDCPLX This is a Complex long double.

6 CTF_FP_LDOUBLE This is a long double.

7 CTF_FP_INTRVL This is a float interval type, a Solaris-specific extension.
Unused: will be recycled.

8 CTF_FP_DINTRVL This is a double interval type, a Solaris-specific extension.
Unused: will be recycled.

9 CTF_FP_LDINTRVL This is a long double interval type, a Solaris-specific ex-
tension. Unused: will be recycled.

10 CTF_FP_IMAGRY This is a the imaginary part of a Complex float. Not cur-
rently generated. May change.

11 CTF_FP_DIMAGRY This is a the imaginary part of a Complex double. Not

currently generated. May change.

Chapter 2: CTF dictionaries 14

12 CTF_FP_LDIMAGRY This is a the imaginary part of a Complex long double.
Not currently generated. May change.

The use of the complex floating-point encodings is obscure: it is possible that CTF_FP_
CPLX is meant to be used for only the real part of complex types, and CTF_FP_IMAGRY et al
for the imaginary part — but for now, we are emitting CTF_FP_CPLX to cover the entire type,
with no way to get at its constituent parts. There appear to be no uses of these encodings
anywhere, so they are quite likely to change incompatibly in future.

2.3.6 Slices

Slices, with kind CTF_K_SLICE, are an unusual CTF construct: they do not directly corre-
spond to any C type, but are a way to model other types in a more convenient fashion for
CTF generators.

A slice is like a pointer or other reference type in that they are always represented by
ctf_stype_t: but unlike pointers and other reference types, they populate the ctt_size
field just like integral types do, and come with an attached encoding and transform the
encoding of the underlying type. The underlying type is described in the variable-length
data, similarly to structure and union fields: see below. Requests for the type size should
also chase down to the referenced type.

Slices are always nameless: ctt_name is always zero for them.

(The libctf API behaviour is unusual as well, and justifies the existence of slices:
ctf_type_kind never returns CTF_K_SLICE but always the underlying type kind, so that
consumers never need to know about slices: they can tell if an apparent integer is actually
a slice if they need to by calling ctf_type_reference, which will uniquely return the
underlying integral type rather than erroring out with ECTF_NOTREF if this is actually a
slice. So slices act just like an integer with an encoding, but more closely mirror DWARF
and other debugging information formats by allowing CTF file creators to represent a bitfield
as a slice of an underlying integral type.)

The vlen in the info word for a slice should be ignored and is always zero. The variable-
length data for a slice is a single ctf_slice_t:

typedef struct ctf_slice

{
uint32_t cts_type;
unsigned short cts_offset;
unsigned short cts_bits;

} ctf_slice_t;

Offset Name Description

0x0 uint32_t cts_type The type this slice is a slice of. Must be an
integral type (or a floating-point type, but
this nonsensical option will go away in v4.)

Chapter 2: CTF dictionaries 15

0x4 unsigned short cts_offset The offset of this integral type in bits from
the start of its enclosing structure field, ad-
justed for endianness: see Section 2.3.11
[Structs and unions|, page 17. Identical se-
mantics to the CTF_INT_OFFSET field: see
Section 2.3.4 [Integer types|, page 11. This
field is much too long, because the maximum
possible offset of an integral type would eas-
ily fit in a char: this field is bigger just for
the sake of alignment. This will change in
v4.

0x6 unsigned short cts_bits The bit-width of this integral type. Identi-
cal semantics to the CTF_INT_BITS field: see
Section 2.3.4 [Integer types|, page 11. As
above, this field is really too large and will
shrink in v4.

2.3.7 Pointers, typedefs, and cvr-quals

Pointers, typedefs, and const, volatile and restrict qualifiers are represented iden-
tically except for their type kind (though they may be treated differently by consuming
libraries like libctf, since pointers affect assignment-compatibility in ways cvr-quals do
not, and they may have different alignment requirements, etc).

All of these are represented by ctf_stype_t, have no variable data at all, and populate
ctt_type with the type ID of the type they point to. These types can stack: a CTF_K_
RESTRICT can point to a CTF_K_CONST which can point to a CTF_K_POINTER etc.

They are all unnamed: ctt_name is 0.

The size of CTF_K_POINTER is derived from the data model (see Section 2.10 [Data
models], page 21), i.e. in practice, from the target machine ABI, and is not explicitly
represented. The size of other kinds in this set should be determined by chasing ctf_types
as necessary until a non-typedef/const/volatile/restrict is found, and using that.

2.3.8 Arrays

Arrays are encoded as types of kind CTF_K_ARRAY in a ctf_stype_t. Both size and kind for
arrays are zero. The variable-length data is a ctf_array_t: vlen in the info word should
be disregarded and is always zero.

typedef struct ctf_array

{
uint32_t cta_contents;
uint32_t cta_index;
uint32_t cta_nelems;

} ctf_array_t;

Offset Name Description
0x0 uint32_t cta_contents The type of the array elements: a type ID.

Chapter 2: CTF dictionaries 16

0x4 uint32_t cta_index The type of the array index: a type ID of an
integral type. If this is a variable-length ar-
ray, the index type ID will be 0 (but the ac-
tual index type of this array is probably int).
Probably redundant and may be dropped in
v4.

0x8 uint32_t cta_nelems The number of array elements. 0 for VLAs,
and also for the historical variety of VLA
which has explicit zero dimensions (which will
have a nonzero cta_index.)
The size of an array can be computed by simple multiplication of the size of the cta_
contents type by the cta_nelems.

2.3.9 Function pointers

Function pointers are explicitly represented in the CTF type section by a type of kind CTF_
K_FUNCTION, always encoded with a ctf_stype_t. The ctt_type is the function return
type ID. The vlen in the info word is the number of arguments, each of which is a type
ID, a uint32_t: if the last argument is 0, this is a varargs function and the number of
arguments is one less than indicated by the vlen.

If the number of arguments is odd, a single uint32_t of padding is inserted to maintain
alignment.

2.3.10 Enums

Enumerated types are represented as types of kind CTF_K_ENUM in a ctf_stype_t. The ctt_
size is always the size of an int from the data model (enum bitfields are implemented via
slices). The vlen is a count of enumerations, each of which is represented by a ctf_enum_t
in the vlen:
typedef struct ctf_enum
{

uint32_t cte_name;

int32_t cte_value;
} ctf_enum_t;

Offset Name Description
0x0 uint32_t cte_name Strtab offset of the enumeration name.
Must not be 0.

Ox4 int32_t cte_value The enumeration value.

Enumeration values larger than 232 are not yet supported and are omitted from the
enumeration. (v4 will lift this restriction by encoding the value differently.)

Forward declarations of enums are not implemented with this kind: see Section 2.3.12
[Forward declarations|, page 18.

Enumerated type names, as usual in C, go into their own namespace, and do not conflict
with non-enums, structs, or unions with the same name.

Chapter 2: CTF dictionaries 17

2.3.11 Structs and unions

Structures and unions are represnted as types of kind CTF_K_STRUCT and CTF_K_UNION:
their representation is otherwise identical, and it is perfectly allowed for “structs” to contain
overlapping fields etc, so we will treat them together for the rest of this section.

They fill out ctt_size, and use ctf_type_t in preference to ctf_stype_t if the struc-
ture size is greater than CTF_MAX_SIZE (Oxfffffffe).

The vlen for structures and unions is a count of structure fields, but the type used to rep-
resent a structure field (and thus the size of the variable-length array element representing
the type) depends on the size of the structure: truly huge structures, greater than CTF_
LSTRUCT_THRESH bytes in length, use a different type. (CTF_LSTRUCT_THRESH is 536870912,
so such structures are vanishingly rare: in v4, this representation will change somewhat for
greater compactness. It’s inherited from v1, where the limits were much lower.)

Most structures can get away with using ctf_member_t:

typedef struct ctf_member_v2

{
uint32_t ctm_name;
uint32_t ctm_offset;
uint32_t ctm_type;

} ctf_member_t;

Huge structures that are represented by ctf_type_t rather than ctf_stype_t have to
use ctf_lmember_t, which splits the offset as ctf_type_t splits the size:

typedef struct ctf_lmember_v2

{
uint32_t ctlm_name;
uint32_t ctlm_offsethi;
uint32_t ctlm_type;
uint32_t ctlm_offsetlo;

} ctf_lmember_t;

Here’s what the fields of ctf_member mean:

Offset Name Description
0x00 uint32_t ctm_name Strtab offset of the field name.

0x04 uint32_t ctm_offset The offset of this field in bits. (Usually, for bitfields, this is
machine-word-aligned and the individual field has an offset
in bits, but the format allows for the offset to be encoded in
bits here.)

0x08 uint32_t ctm_type The type ID of the type of the field.

Here’s what the fields of the very similar ctf_lmember mean:

Offset Name Description
0x00 uint32_t ctlm_name Strtab offset of the field name.

Chapter 2: CTF dictionaries 18

0x04 uint32_t ctlm_offsethi The high 32 bits of the offset of this field in bits.
0x08 uint32_t ctlm_type The type ID of the type of the field.

0x0c uint32_t ctlm_offsetlo The low 32 bits of the offset of this field in bits.

Macros CTF_LMEM_OFFSET, CTF_OFFSET_TO_LMEMHI and CTF_OFFSET_TO_LMEMLO serve
to extract and install the values of the ctlm_offset fields, much as with the split size fields
in ctf_type_t.

Unnamed structure and union fields are simply implemented by collapsing the unnamed
field’s members into the containing structure or union: this does mean that a structure
containing an unnamed union can end up being a “structure” with multiple members at
the same offset. (A future format revision may collapse CTF_K_STRUCT and CTF_K_UNION
into the same kind and decide among them based on whether their members do in fact
overlap.)

Structure and union type names, as usual in C, go into their own namespace, just as
enum type names do.

Forward declarations of structures and unions are not implemented with this kind: see
Section 2.3.12 [Forward declarations], page 18.

2.3.12 Forward declarations

When the compiler encounters a forward declaration of a struct, union, or enum, it emits a
type of kind CTF_K_FORWARD. If it later encounters a non- forward declaration of the same
thing, it marks the forward as non-root-visible: before link time, therefore, non-root-visible
forwards indicate that a non-forward is coming.

After link time, forwards are fused with their corresponding non-forwards by the dedu-
plicator where possible. They are kept if there is no non-forward definition (maybe it’s not
visible from any TU at all) or if multiple conflicting structures with the same name might
match it. Otherwise, all other forwards are converted to structures, unions, or enums as
appropriate, even across TUs if only one structure could correspond to the forward (after
all, all types across all TUs land in the same dictionary unless they conflict, so promoting
forwards to their concrete type seems most helpful).

A forward has a rather strange representation: it is encoded with a ctf_stype_t but the
ctt_type is populated not with a type (if it’s a forward, we don’t have an underlying type
yet: if we did, we’d have promoted it and this wouldn’t be a forward any more) but with
the kind of the forward. This means that we can distinguish forwards to structs, enums and
unions reliably and ensure they land in the appropriate namespace even before the actual
struct, union or enum is found.

2.4 The data object section

This is a very simple section, an array of type IDs, populated only in CTF sections that are
embedded in ELF objects. If there is no object index section, each of these is associated
1:1 with an ELF symbol of type STT_OBJECT with a nonzero value: the linker shuffles the
data object section to correspond with the order of the data symbols in the ELF file.

Symbols with no name, undefined symbols and symbols named “_START_” and
“_END_” are skipped.

Chapter 2: CTF dictionaries 19

Consumers can use this to map from ELF data sybmols directly to the type of those
symbols.

Symbols that have no corresponding type are represented by type ID 0.

The section may have fewer entries than the symbol table, in which case no later entries
have associated types.

2.5 The function info section

This is similar to the data object section, except that rather than being an array of data
types, it’s an array of little structures similar to CTF_K_FUNCTION. There is no structure
associated with this in ctf.h, but if there was it would look like this:

struct ctf_funcinfo
{

uint32_t ctt_info;

uint32_t ctt_type;

uint32_t ctt_arg[N];
s

If this looks similar to CTF_K_FUNCTION above, this is not surprising: in effect it is a
truncated ctf_stype_t without a name, followed by the variable-length data expected for
the CTF_K_FUNCTION: the ctt_info is identical. So we shall defer to that section for offsets,
etc. See Section 2.3.9 [Function pointers|, page 16.

It is linked to function symbols identically to the data object section, by traversing
the ELF symbol table and associating all named, defined STT_FUNC symbols not named
“_START” or “_END” with a single entry in this section, stopping when we get to the end
of the section.

2.6 The function and object index sections

Before linking is complete, the symbol tables have not been laid out, so no stable ordering is
present for the data object or function info sections. The compiler handles this by emitting
the data object and function info sections in whatever order it pleases, and emitting a pair
of index sections to help the linker reshuffle things. Each of these sections is an array of
strtab offsets associated 1:1 with the corresponding data object / function info section: the
strings (always in the CTF internal strtab) are the names of the corresponding symbols.
At link time, the linker uses the index sections to find the intended symbol names of every
entry in the data object and function info sections, and shuffles those sectiosn into the order
given in the final ELF symbol table, discarding the index sections and all types in the data
object and function info sections that do not have corresponding symbols in the final symbol
table.

(Not yet implemented in 1ibctf or the linker, but will be soon.)

2.7 The variable section

The variable section is a simple array mapping names (strtab entries) to type IDs, intended
to provide a replacement for the data object section in dynamic situations in which there
is no static ELF strtab but the consumer instead hands back names. The section is sorted
into ASClIIbetical order by name for rapid lookup, like the CTF archive name table.

Chapter 2: CTF dictionaries 20

The section is an array of these structures:

typedef struct ctf_varent
{
uint32_t ctv_name;
uint32_t ctv_type;
} ctf_varent_t;

Offset Name Description
0x00 uint32_t ctv_name Strtab offset of the name

0x04 uint32_t ctv_type Type ID of this type

There is no analogue of the function info section for this dynamic case yet: if there is
need for one, a future format revision can add it.

2.8 The label section

The label section is a currently-unused facility allowing the tiling of the type space with
names taken from the strtab. The seciton is an array of these structures:

typedef struct ctf_lblent
{
uint32_t ctl_label;
uint32_t ctl_type;
} ctf_lblent_t;

Offset Name Description
0x00 uint32_t ctl_label Strtab offset of the label

0x04 uint32_t ctl_type Type ID of the last type
covered by this label

Semantics will be attached to labels soon, probably in v4 (the plan is to use them to allow
multiple disjoint namespaces in a single CTF file, removing many uses of CTF archives, in
particular in the .ctf section in ELF objects).

2.9 The string section

This section is a simple ELF-format strtab, starting with a zero byte (thus ensuring that
the string with offset 0 is the null string, as assumed elsewhere in this spec). The strtab is
usually ASCllIbetically sorted to somewhat improve compression efficiency.

Where the strtab is unusual is the references to it. CTF has two string tables, the
internal strtab and an external strtab associated with the CTF dictionary at open time:
usually, this is the ELF strtab of a CTF dictionary embedded in an ELF file. We distinguish
between these strtabs by the most significant bit, bit 31, of the 32-bit strtab references: if
it is 0, the offset is in the internal strtab: if 1, the offset is in the external strtab.

Chapter 2: CTF dictionaries 21

2.10 Data models

The data model is a simple integer which indicates the ABI in use on this platform. Right
now, it is very simple, distinguishing only between 32- and 64-bit types: a model of 1
indicates ILP32, 2 indicats LP64. The mapping from ABI integer to type sizes is hardwired
into 1libctf: currently, we use this to hardwire the size of pointers, function pointers, and
enumerated types,

This is a very kludgy corner of CTF and will probably be replaced with explicit header
fields to record this sort of thing in future.

2.11 Limits of CTF

The following limits are imposed by various aspects of CTF version 3:

CTF_MAX_TYPE
Maximum type identifier (maximum number of types accessible with parent
and child containers in use): Oxfffffffe

CTF_MAX_PTYPE
Maximum type identifier in a parent dictioanry: maximum number of types in
any one dictionary: Ox7{fftf

CTF_MAX_NAME
Maximum offset into a string table: Ox7{iffttf

CTF_MAX_VLEN
Maximum number of members in a struct, union, or enum: maximum number
of function args: OxfHfff

CTF_MAX_SIZE
Maximum size of a ctf_stype_t in bytes before we fall back to ctf_type_t:
Oxfffffffe bytes

Other maxima without associated macros:
e Maximum value of an enumerated type: 2732

e Maximum size of an array element: 2732

These maxima are generally considered to be too low, because C programs can and do
exceed them: they will be lifted in format v4.

2.12 Older versions
(To be written.)

2.12.1 CTF version 2
(To be written.)

2.12.2 CTF version 1
(To be written.)

Index

A

alignment i 4
archive, CTF archive....................... ..., 2
ATTAYS . oo 15
B

bool .. 11
C

char....... 11
Child rangeoooiiiii i 9
Complex, double............... ... 13
Complex, float ... 13
Complex, signed double........................ 13
Complex, signed float 13
Complex, unsigned double 13
Complex, unsigned float........................ 13
const ... 15
cta_contentsl 15
ctaindex ... il 16
cta_nelems.......... ... 16
Cte_Name ...t 16
cte_value ... 16
CTF header.o 5
CTF versions, Versionsc.euuuueee.... 4
ctf_archive_modent_t................ 3
ctf_archive_modent_t, ctf_offset.................. 3
ctf_archive_modent_t, name_offset 3
ctfarray t......ooi 15
ctf_array_t, cta_contents 15
ctf_array_t, cta_index 16
ctf_array_t, cta_nelems......................... 16
CTF_CHAR ... o 12
ctfienum_t...... 16
ctf_enum_t, cte_name 16
ctf_enum_t, cte_valueo.al. 16
CTF_F_.COMPRESS.......cccoiiiiiii 5
CTF_FP_BITS ... 13
CTF_FP_CPLX ... 13
CTF_FP_DCPLX ... 13
CTF_FP.DIMAGRY ... 13
CTF_FP.DINTRVL ... 13
CTF_.FP.DOUBLE....... ... 13
CTF_FP.ENCODINGccoiiiiiiina... 13
CTF_FP_.IMAGRY 13
CTF_FP_INTRVL ... 13
CTF_FP_.LDCPLXot 13
CTF_FP_LDIMAGRY ... 14
CTF_FP_LDINTRVL ... 13
CTF_FP_LDOUBLE......... ..o 13
CTF_FP_OFFSET ... i 13

CTF_FP.SINGLE 13

22

ctf header_t....... .. .o o i 5
ctf_header_t, cth_cuname........................ [§
ctf_header_t, cth_flags........................... 4
ctf_header_t, cth_funcidxoff 6
ctf_header_t, cth_funcoff 6
ctf_header_t, cth_lbloff.......................... 6
ctf_header_t, cth_magic 4
ctf_header_t, cth_objtidxoff............... 6
ctf_header_t, cth_objtoff......... 6
ctf_header_t, cth_parlabel 6
ctf_header_t, cth_parname....................... 6
ctf_header_t, cth_preamble 6
ctf_header_t, cth_strlen.......................... 7
ctf_header_t, cth_stroff 7
ctf_header_t, cth_typeoff 7
ctf_header_t, cth_varoff.................. 7
ctf_header_t, cth_version 4
etfidot ..o 9
CTF_INT BITS ..ot 12
CTF_INT BOOL ...t 12
CTF_INT_CHAR ... 12
CTF_INT_DATA ... 12, 13
CTF_INT_ENCODING ..., 12
CTF_INT_OFFSET ... 12
CTF_INT.SIGNED ... 12
CTF_K_CONST ... 15
CTF_ K. ENUM 16
CTF_K_FLOATo 13
CTF_.K.FORWARD ... 18
CTF_K_ INTEGER ... 11
CTF_K_POINTER ... 15
CTF_K_RESTRICT ...t 15
CTF_K_SLICE ... 14
CTF_K_STRUCT 17
CTF_K_TYPEDEF, 15
CTF_K_UNION 17
CTF_K_.UNKNOWNt 11
CTF_K_VOLATILEt 15
ctflblent_t 20
ctf_lblent_t, ctl label............, 20
ctf_lblent_t, ctl_type ... 20
ctf_lmember_t i 17
ctf_Imember_t, ctlm_ name 17
ctf_lmember_t, ctlm_offsethi.................... 18
ctf_Ilmember_t, ctlm_offsetlo.................... 18
CTF_LSIZE_SENT ... 8
CTF_LSTRUCT_THRESH 17
CTE_MAGIC ... 4
CTEF_MAX LSIZE 17
ctfmember_t....... ... i 17
ctf_member_t, ctlm_type................, 18
ctf_member_t, ctm_name....................... 17
ctf_member_t, ctm_offset....................... 17
ctf_member_t, ctm_type........... 17
ctfoffseto 3

Index

ctf_preamble_t il 4
ctf_preamble_t, ctp_flags 4
ctf_preamble_t, ctp_magic............... 4
ctf_preamble_t, ctp_version...................... 4
CTF_SIZE_TO_LSIZE HI....................... 8
CTF_SIZE_-TO_LSIZE_.LO...................... 8
ctfslice t. ..o 14
ctf_slice_t, cts_bits........... ... 15
ctf_slice_t, cts_offset. ..., 15
ctf_slice_t, cts_type ... 14
ctfstype t. .o 8
ctf_stype_t, ctt_info......... oL 8
ctf_stype_t, ctt_size il 8
ctf_stype_t, ctt_type il 8
CTF_.TYPE_INFO...........ooiiiiiii . 9
CTF.TYPE_LSIZE o i 8
ctftype_t.. 8
ctf_type_t, ctt_info....... i 8
ctf_type_t, ctt_Isizehi........ oL 8
ctf_type_t, ctt_Isizelo.................. ..l 8
ctf_type_t, ctt_size i 8
CTF_V2_ INDEX_TO_TYPE................... 10
CTF_V2_ INFO_ISROOT ...t 9
CTF_V2_ INFO_KIND oo 9
CTF_V2_.INFO_VLEN, 9
CTF_V2_TYPE_ISCHILD 10
CTF_V2_TYPE_ISPARENT 10
CTF_V2_.TYPE_TO_INDEX................... 10
ctfovarent_t........ i 20
ctf_varent_t, ctv_.name 20
ctf_varent_t, ctv_type........... . ..ol 20
CTF_VERSION_1 ... 21
CTF_VERSION_1_.UPGRADED_3............. 21
CTF_.VERSION_2o 21
CTF_VERSION_ 3o 4
ctfa_ctfs ... o 3
ctfamagic...... ... 3
CTFA_MAGIC ... 3
ctfamodel 3
ctfanames.......o i 3
ctfanfiles.........oo 3
cthocuname......... i i 6
cthoflags. ... 4
cth_funcidxoff....... 6
cth_funcoff...... 6
ctholbloff 6
cthomagic......... 4
cth_objtidxoff......... ... 6
cth_objtoff. 6
cth_parlabel 6
cth_parname............. o i 6
cth_preamblel 6
cthostrlen..........o i i 7
cthostroff o 7
cth_typeoff... 7
cthovaroffo o 7
cthoversion. ... i i 4

ctl.label 20

23
ctltype. .o 20
ctlmmname.............. 17
ctlm_offsethi........., 18
ctlm_offsetlo.......... 18
ChIM_NAIMNE . ..ottt 17
ctm_offset 17
ctm_type........o i 17, 18
ctpflags ... 4
CP-MAagIC. . oottt 4
CEP_VETSION. ..ttt 4
CES_DItS . e 15
cts_offset ... 15
CES Y P - 14
cttoinfo ... 8
ctt_lsizehi..... 8
ctt_lsizelo. ... 8
ctt_name. 8
ClE_SIZE . oot 8
ctt_type ... 8
ctv_nameoiiiii e 20
ctv_type. ... 20
CVI-QUALS. « . 15
D
Datamodels................ .. i 21
Data object section ..., 18
dictionary, CTF dictionary...................... 4
double....... ... 13
E
ENAIANIESS . . .o 4
£S5 110 40 e 16, 18
Enums........ ... 16
F
Hoat ... 13
Floating-point types 13
Forwards 18
Function index section 19
Function info section........................... 19
Function pointers............. oo 16
I
IO 11
Integer types. 11
L
Label section i, 20
libetf, effect of slices ...t 14
Limitso 21
long . oo 11
longlong ... 11

Index

N

name_offset L. 3
Object index sectionc.ovvuieeennn... 19
OVEIVIEW .\ ottt 1

P

Parent range......... ool 9
Pointers ... 15
Pointers, to functions 16

R

TeStTiCt .o 15

S

Sections, data object.............. L 18
Sections, function index........................ 19
Sections, function info.......................... 19
Sections, header............ 5
Sections, labelo 20
Sections, object index............... ... 19
Sections, string oL 20
SECtiONS, tYPE .« vt vttt 7
Sections, variable il 19
short ... 11
signed char 11
signed double.......... il 13
signed float 13
signedint........... L 11
signed long i 11
signed long long............ o L 11
signed short L. 11
SHCES . v 14
Slices, effect on ctf_type_kind 14
Slices, effect on ctf_type_reference.............. 14
String section............cooiiiiiiiiiiiiiii 20
struct ... 17, 18
struct ctf_archive........... oL 2
struct ctf_archive, ctfa_ctfs...................... 3
struct ctf_archive, ctfa_magic................. ... 3
struct ctf_archive, ctfa_model.................... 3
struct ctf_archive, ctfa_names................... 3
struct ctf_archive, ctfa_nfiles 3
struct ctf_archive_modent 3
struct ctf_archive_modent, ctf_offset............. 3
struct ctf_archive_modent, name_offset 3
struct ctf_array ... oL 15
struct ctf_array, cta_contents................... 15
struct ctf_array, cta_index...................... 16
struct ctf_array, cta_nelems 16
struct ctf_enum oo 16
struct ctf_enum, cte_name...................... 16

struct ctf_enum, cte_value...................... 16

24
struct ctf_header........... 5
struct ctf_header, cth_cuname................... 6
struct ctf_header, cth flags...................... 4
struct ctf_header, cth_funcidxoff................. 6
struct ctf_header, cth_funcoff.................... 6
struct ctf_header, cth_lbloff...................... 6
struct ctf_header, cth_magic..................... 4
struct ctf_header, cth_objtidxoff................. 6
struct ctf_header, cth_objtoff.................... 6
struct ctf_header, cth_parlabel................... 6
struct ctf_header, cth_parname.................. 6
struct ctf_header, cth_preamble.................. 6
struct ctf_header, cth_strlen..................... 7
struct ctf_header, cth_stroff 7
struct ctf_header, cth_typeoff.................... 7
struct ctf_header, cth_varoff..................... 7
struct ctf_header, cth_version.................... 4
struct ctf_lblent......... o L. 20
struct ctf_lblent, ctl_label 20
struct ctf_lblent, ctl_type........... 20
struct ctf_lmember_v2......... 17
struct ctf_lmember_v2, ctlm_name.............. 17
struct ctf_lmember_v2, ctlm_offsethi............ 18
struct ctf_lmember_v2, ctlm_offsetlo............ 18
struct ctf_lmember_v2, ctlm_type 18
struct ctf_member_v2.....o i 17
struct ctf_member_v2, ctm name............... 17
struct ctf_member_v2, ctm_offset............... 17
struct ctf_member_v2, ctm_type................ 17
struct ctf_preamble........... oL 4
struct ctf_preamble, ctp_flags.................... 4
struct ctf_preamble, ctp_magic.................. 4
struct ctf_preamble, ctp_version................. 4
struct ctf_slice 14
struct ctf_slice, cts_bits 15
struct ctf_slice, cts_offset............... 15
struct ctf_slice, cts_type............coiiiiiiin. 14
struct ctf_stype ... 8
struct ctf_stype, ctt_info 8
struct ctf_stype, ctt_size........... 8
struct ctf_stype, ctt_type.......... 8
struct ctf_type 8
struct ctf_type, ctt_info 8
struct ctf_type, ctt_lsizehi....................... 8
struct ctf_type, ctt_lsizelo....................... 8
struct ctf_type, ctt_size............ ... L 8
struct ctf_varento oot 20
struct ctf_varent, ctv_name..................... 20
struct ctf_varent, ctv_type 20
Structurest 17
STT_OBJECT ... 18

Index

TypeIDs ... o 9
Type IDs, ranges. ..., 9
Typeindexes.........coooiiiiiiiiiiiiii .. 9
Typekinds ... 10
Type section...........oooiiiiiiiiiiiiio i 7
Type, IDsof ... 9
Type, indexes of ... 9
Type, kindsof 10
typedefo 15
Typedefs. ... 15
Types, floating-point..................... ..., 13
Types, integer i 11

Types, slices of integral 14

25
U
UIHOTL « ettt 17, 18
UnIONS. . v v 17
unsigned char................. 11
unsigned double........ oo oo 13
unsigned float......... oL 13
unsigned int 11
unsigned long......... oo 11
unsigned long long 11
unsigned shortol 11
Unused bitsooiiiiiiiiiii i 13, 14
\Va
Variable section........... ... i 19
volatile ... 15

	Overview
	CTF archives
	CTF dictionaries
	CTF Preamble
	CTF file-wide flags

	CTF header
	The type section
	The info word, ctt_info
	Type indexes and type IDs
	Type kinds
	Integer types
	Floating-point types
	Slices
	Pointers, typedefs, and cvr-quals
	Arrays
	Function pointers
	Enums
	Structs and unions
	Forward declarations

	The data object section
	The function info section
	The function and object index sections
	The variable section
	The label section
	The string section
	Data models
	Limits of CTF
	Older versions
	CTF version 2
	CTF version 1

	Index

